The application of thermal conductivity measurements to the Kuqa River profile, China, and implications for petrochemical generation
نویسندگان
چکیده
Measurement of thermal conductivity of rocks is important to understand the thermal properties of earth materials, the characteristics of terrestrial heat flow, and the formation of oil. In this paper we report thermal conductivity, thermal diffusivity, and heat capacity data for 12 conglomerate, sandstone, and gypsum-bearing samples from the Paleogene Kuqa River profile in Kuqa, China. Samples were measured via the hot disk technique, yielding thermal conductivity values of 0.436 to 0.998 W/mK, thermal diffusivity measurements of 0.395 to 1.314 mm(2)/s, and heat capacity values of 0.439 to 1.717 MJ/m(3)K. These analyses reveal that gypsum-bearing rocks, with their low thermal conductivity, can act as excellent insulators over oil and gas reservoirs, aiding the formation and thermal maturation of petroleum.
منابع مشابه
Prediction of Temperature distribution in Straight Fin with variable Thermal Conductivity and Internal Heat Generation using Legendre Wavelet Collocation Method
Due to increasing applications of extended surfaces as passive methods of cooling, study of thermal behaviors and development of mathematical solutions to nonlinear thermal models of extended surfaces have been the subjects of research in cooling technology over the years. In the thermal analysis of fin, various methods have been applied to solve the nonlinear thermal models. This paper focuses...
متن کاملCasson Fluid Flow with Variable Viscosity and Thermal Conductivity along Exponentially Stretching Sheet Embedded in a Thermally Stratified Medium with Exponentially Heat Generation
The motion of temperature dependent viscosity and thermal conductivity of steady incompressible laminar free convective (MHD) non-Newtonian Casson fluid flow over an exponentially stretching surface embedded in a thermally stratified medium are investigated. It is assumed that natural convection is induced by buoyancy and exponentially decaying internal heat generation across the space. The dim...
متن کاملModel for Thermal Conductivity of Nanofluids Using a General Hybrid GMDH Neural Network Technique
In this study, a model for estimating the NFs thermal conductivity by using a GMDH-PNN has been investigated. NFs thermal conductivity was modeled as a function of the nanoparticle size, temperature, nanoparticle volume fraction and the thermal conductivity of the base fluid and nanoparticles. For this purpose, the developed network contains 8 layers with 2 inputs in each layer and also tra...
متن کاملUsing the Lattice Boltzmann Method for the numerical study of non-fourier conduction with variable thermal conductivity
The lattice Boltzmann method (LBM) was used to analyze two-dimensional (2D) non-Fourier heat conduction with temperature-dependent thermal conductivity. To this end, the evolution of wave-like temperature distributions in a 2D plate was obtained. The temperature distributions along certain parts of the plate, which was subjected to heat generation and constant thermal conductivity condit...
متن کاملHaar Wavelet Collocation Method for Thermal Analysis of Porous Fin with Temperature-dependent Thermal Conductivity and Internal Heat Generation
In this study, the thermal performance analysis of porous fin with temperature-dependent thermal conductivity and internal heat generation is carried out using Haar wavelet collocation method. The effects of various parameters on the thermal characteristics of the porous fin are investigated. It is found that as the porosity increases, the rate of heat transfer from the fin increases and the th...
متن کامل